Hung Tran

<u>Linkedin</u> – <u>Google Scholar</u> – <u>Github</u> – <u>Website</u>

17 Garvey Ct, Highton, VIC 3216, Australia – <u>trandh.work@gmail.com</u> – (+61) 435 988 551

PROFESSIONAL PROFILE

- Ph.D. student in Machine Learning, Computer Vision. Est. graduation: Jan 2024.
- Research interest: Human behavior understanding, Video understanding, Knowledge Representation with LLMs.
- First author of papers at ICCV 2023, CVPRW 2022, WACV 2021.
- Industrial experiences in distributed web-based systems. Proficiency in Python and deep learning frameworks.
- Proficiency in Multi-GPU training, Computer Vision, Natural Language Processing, and Multi-modal Deep learning.

EDUCATION

Ph.D. in Computer Science – Applied Artificial Intelligence Institute (A2I2), Deakin University, Australia Thesis: Analyzing Structures of Human Behavior in Videos.	Jan 2020 – Jan 2024
Bachelor in Information Technology – The University of Danang, Vietnam Thesis: Light-weight Deep Learning model for Human Segmentation. Top 10%.	May 2014 – May 2019
RESEARCH EXPERIENCE	
 Foundational Commonsense Prior for Personalized Action Forecasting –A2I2, Deakin University, Australia Incorporating LLMs to enhance existing vision models, while maintaining a practical inference speed. <u>Outcome</u>: One planned submission to CVPR 2024. 	Dec 2022 – Nov 2023
 Persistent – Transient Duality in Human Behavior Modeling – A2I2, Deakin University, Australia Modeling sequential human behavior in a multi-mechanism neural network with model switching capability. Implemented this model to predict future human behavior using video inputs. Achieved new SoTA in 3D and 2D motion prediction, and trajectory prediction. <u>Outcome</u>: Two papers accepted at CVPRW 2022 and ICCV 2023. 	Jan 2021 – Nov 2022
 Goal-driven Pedestrian Trajectory Prediction – A2I2, Deakin University, Australia Formulated the concept of goal-based modeling and applied it to Trajectory Prediction. Designed a dual-stream, hierarchical network to model the pedestrians' goal and forecast future trajectories. <u>Outcome</u>: One paper accepted at WACV 2021. 	Feb 2020 – Dec 2020
 Affordable Mini Self-driving vehicle – VNUK, The University of Danang, Vietnam Developed an affordable self-driving platform for educational purpose. Designed a cost-effective hardware configuration for the self-driving car, inspired by a costly open-source pro Implemented the vehicle control interface with lane-line detection and object detection in various lighting cond <u>Outcome</u>: Cut the cost of building a 1/10 scale Nvidia-equipped self-driving car from \$4,200 to under \$2,000. 	May 2019– Aug 2019 ject. ditions.
 Research Output Collection and Categorization System - The University of Danang, Vietnam. Designed an automated system to crawl and organize research output at the University of Danang. Unsupervised categorization of research output into topics using Latent Dirichlet Allocation. Classified newly research output into these topics. <u>Outcome</u>: First prize in the university-level student research competition. 	Sep 2016– May 2017 added
INDUSTRIAL EXPERIENCE	
 Software developer intern – Sioux High Tech Software Ltd. Developed a remote learning system on AWS using Node is MongoDB and React is 	Sep 2018 – Jan 2019

- Developed a remote learning system on AWS using Node.js, MongoDB, and React.js. Jan 2019
 Deployed the system on Amazon EC2 instances in 3 regions: Singapore, North America, and China, using Amazon S3 for data storage, Docker for containerization, and Nginx for DNS mapping.
- *Outcome*: A distributed system for real-time online teaching with full unit-testing and back-up functionalities.

PUBLICATIONS

- Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran. "Persistent-Transient Duality: A Multi-Mechanism Approach for Modeling Human-Object Interaction." Proceedings of The International Conference on Computer Vision (ICCV), 2023.
- Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran. "*Persistent-Transient Duality in Human Behavior Modeling*." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) 2022.
- Hung Tran, Vuong Le, and Truyen Tran. "*Goal-driven Long-Term Trajectory Prediction*." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021.

SKILLS

Programming Languages: Python - Over 5 years of experience, Other: C/C++, JS, Node.js, MongoDB.
Deep Learning Models: RNNs, CNNs, Transformers (ViT, MviT), Multimodal Networks (CLIP, Open Flamingo), LLMs.
Libraries: PyTorch, Hugging Face, NetworkX, NumPy, Pandas, OpenCV, Matplotlib.
Platform: AWS, Google Cloud, Git, Docker, Slurm, Distributed Computing (NCCL, Ray Framework).
Embedded Computing Platforms: Raspberry Pi, Arduino, Nvidia Jetson Tx1/2.

SCHOLARSHIPS AND AWARDS

Deakin University Postgraduate Research Scholarship.	2020 - 2024
People's choice Award, Three Minute Thesis Competition, A2I2.	2023
Top 8 nationwide, Digital Race Driverless: Self-driving car competition, FPT Group, Vietnam.	2018

REFERENCES

- Dr. Vuong Le, Amazon Machine Learning Australia <u>levuong@amazon.com</u>
- A/Prof. Truyen Tran, Applied Artificial Intelligence Institute truyen.tran@deakin.edu.au
- Prof Svetha Venkatesh, Applied Artificial Intelligence Institute svetha.venkatesh@deakin.edu.au